Available online at www.sciencedirect.com

Journal of the European Ceramic Society 23 (2003) 2589–2592

[www.elsevier.com/locate/jeurceramsoc](http://www.elsevier.com/locate/jeurceramsoc/a4.3d)

Microwave dielectric properties of $Ca_2P_2O_7$

Jian-jiang Bian, Dong-Wan Kim, Kug Sun Hong*

School of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul, South Korea

Abstract

Microwave dielectric properties of α - and β -Ca₂P₂O₇ ceramic materials were investigated, by a network analyzer at the frequency of 10 GHz. It was found that β -Ca₂P₂O₇ could be sintered at 1150 °C for 2 h with high bulk density (98% TD) and α -Ca₂P₂O₇ could be sintered at 1290 °C/4h with bulk density of 95.8% TD. The dielectric constant (ε_r) of β -Ca₂P₂O₇ sintered at 1150 °C/2 h is 8.4, the temperature coefficient of resonant frequency (τ_f) is -53 ppm/°C, and the Q×f value is 53,500 GHz. α -Ca₂P₂O₇ sintered at 1290 °C/4 h has ε_r of 7.8, τ_f of -97 ppm/°C and $Q \times f$ value of 14,115 GHz. \odot 2003 Elsevier Ltd. All rights reserved.

Keywords: Bond valence; Calcium pyrophosphate; Microwave dielectric properties

1. Introduction

With the rapid development of modern microwave communication system, such as mobile telephones, high quality microwave dielectric ceramics have attracted much scientific and commercial attention. In the case of microwave substrate application, low dielectric constant less than 10 are ideal values for integrated circuits. In addition, substrate materials should have low dielectric $\cos(\tan\delta)$ and low temperature coefficient of resonant frequency (τ_f) . Materials that have been investigated which could be possible substrate include Al_2O_3 and rare-earth aluminates (such as $LaAlO₃$).^{[1,2](#page-3-0)} Although these compounds exhibit good microwave dielectric properties, the search for new materials with much better sintering and microwave dielectric properties continues.

Pyrophosphate $Ca_2P_2O_7$ is a compound with dichromate structure. Its current applications lie mainly in the fields of luminescence and biomaterials.[3,4](#page-3-0) The crystal structure of $Ca_2P_2O_7$ has been extensively studied.^{[5,6](#page-3-0)} X-ray diffraction studies of $Ca_2P_2O_7$ show that it exists in three different forms depending on the temperature of firing:[7](#page-3-0)

$$
\gamma\text{-}Ca_2P_2O_7 \xrightarrow{750^\circ C} \beta\text{-}Ca_2P_2O_7 \xrightarrow{1171^\circ C} \alpha\text{-}Ca_2P_2O_7
$$

Lattice parameters of the two crystal phases are listed in [Table 1](#page-1-0). The crystal structures of α and β -Ca₂P₂O₇ generated using the ATOMS software developed by Eric Dowty,^{[8](#page-3-0)} are shown in [Fig. 1](#page-1-0). β -Ca₂P₂O₇ is tetragonal and the high temperature form of α -Ca₂P₂O₇ crystallizes in the monoclinic space group. Each of the two independent pyrophosphate groups is an essentially eclipsed configuration with a P–O–P angle of 131° , 138° for β -Ca₂P₂O₇ and angle of 130 \degree for α -Ca₂P₂O₇.

Apart from the investigation of crystal structure and luminescence characteristics, to the best of our knowledge, no dielectric properties have been reported for $Ca_2P_2O_7$. The intention of this study is to investigate the microwave dielectric properties of α - and β -Ca₂P₂O₇. The microwave dielectric properties are discussed from the point view of bond valence and infrared (IR) reflectivity analysis.

2. Experimental procedure

Synthesis of $Ca_2P_2O_7$ was conducted by using traditional solid-state reaction techniques. High purity CaCO₃ (99.9%) and $(NH_4)_2HPO_4$ (99%) were used as raw materials. Stoichiometric mixtures of starting materials were homogenized by ball milling with $ZrO₂$ media in ethanol for 24 h and calcined at 1000 °C and 1250 °C for 2 h in order to obtain β and α form $Ca₂P₂O₇$, respectively. The calcined powders were then milled again, uniaxially pressed into pellets at the pressure

^{*} Corresponding author. Tel.: +822-880-8316; fax: +822-886- 4156.

E-mail address: kshongss@plaza.snu.ac.kr (K.S. Hong).

Fig. 1. Unit cell structures of (a) β -Ca₂P₂O₇ and (b) α -Ca₂P₂O₇.

of 1000 kg/cm² and sintered at 1150 \degree C/2 h for β -Ca₂P₂O₇ and 1290 °C/4 h for α -Ca₂P₂O₇.

The phases present in the calcined, sintered and quenched samples were identified by X-ray powder diffraction (XRD) (Model M18XHF, Macscience Instrument, Japan). The bulk density of the sintered specimens was identified by Archimedes' method. The microstructure analysis of the sintered sample was characterized by scanning electron microscopy (SEM) (Model XL20, Philips Instruments, Netherlands). The infrared reflection spectrum was measured using Fourier infrared spectrometer (Model DA8-12, Bomem, ON, Canada) from 400 to 4000 cm-1 . Microwave dielectric properties of the sintered samples were measured at x-band using network analyzer (Hewlett Packard, Model HP8720C, USA). The quality factor was measured by the transmission cavity method. The relative dielectric constant ε_{γ} was measured by post resonator method and the temperature coefficient of the resonator frequency (τ_f) was measured using invar cavity in the temperature range from 20 to 80 \degree C.

3. Results and discussion

The XRD patterns of calcined and sintered specimens are shown in Fig. 2. It shows that the powder calcined

Table 1 Crystal structure parameters of α - and β -Ca₂P₂O₇^{[5,6](#page-3-0)}

	$Ca_2P_2O_7$ Unit cell parameters				Space	Z	$\rho_{calc.}$ (g/cm^3)
		$a(\mathring{A})$ $b(\mathring{A})$ $c(\mathring{A})$		β (°)	group		
β	6.684	6.684	24.144	-90	P_4	8	3.129
α	12.66	8.542	5.315 90.3		$P2_1/n$	4	2.950

at 1000 °C/2 h exhibits a single phase of β -Ca₂P₂O₇, and a pure α form could be obtained when it was fired at 1250 °C/2 h. β -Ca₂P₂O₇ sintered at 1150 °C/2 h and α -Ca₂P₂O₇ sintered at 1290 °C/4 h exhibit the same phase as their calcined powders, respectively. A bulk density as high as 98% theoretical density (TD) is obtained when β -Ca₂P₂O₇ is sintered at 1150 °C/2 h. For α -Ca₂P₂O₇, bulk density of 95.8% TD is obtained when it is sintered at 1290 °C for 4 h ([Table 2\)](#page-2-0). SEM photographs of the sintered α - and β -Ca₂P₂O₇ are shown in [Fig. 3](#page-2-0). The β -Ca₂P₂O₇ exhibits a denser and more homogeneous microstructure than α -Ca₂P₂O₇. It should be noted that there are many micro-cracks penetrating into the grains of α -Ca₂P₂O₇ [indicated by

Fig. 2. XRD patterns for α - and β -Ca₂P₂O₇ calcined and sintered at different temperatures.

Table 2 Microwave dielectric properties of the sintered β - and α -Ca₂P₂O₇

Sintering temperature (°C)	$O \times f$ (GHz)	$\varepsilon_{\rm r}$ (measured)	$\varepsilon_{\rm r}$ (calc)	$\tau_{\rm f}$ (ppm/°C)	$\rho_{\rm rel}$ $($ %)
1150/2 h	53500	8.4	9.426	-53	98.0
1290/4 h	14115	7.8	8.31	-97	95.8

arrow in Fig. 3(b)]. These micro-cracks are induced by large volume change (6.6 vol.) caused by the phase transformation between α and β during the sintering process.[9](#page-3-0)

Microwave dielectric properties of α - and β -Ca₂P₂O₇ sintered at 1290 °C/4 h and 1150 °C/2 h, respectively, are shown in Table 2. The dielectric constant of β -Ca₂P₂O₇ is 8.4, which is a little higher than that of α -Ca₂P₂O₇. At microwave frequencies, the total dielectric polarizabilities are the sum of ionic and electronic components. The total ionic polarizabilities can be calculated by the additivity rule with Shannon's ionic polarizability data.[10](#page-3-0) The total electronic polarizabilities can be estimated by the equation: $\varepsilon_{\infty} = (1+R)^2/(1-R)^2$, where R is the reflectivity of IR at 4000 cm^{-1} (Fig. 4). So, the mean static dielectric constants of α -and β -Ca₂P₂O₇ can be estimated by the well-known Clausius-Mosotti equation

Fig. 3. SEM photographs of (a) β -Ca₂P₂O₇ sintered at 1150 °C/2 h and (b) α -Ca₂P₂O₇ sintered at 1290 °C/4 h.

Table 3

Bond valence sum and average bond strength of P^{5+} and Ca^{2+} in β and α -Ca₂P₂O₇

Ca_2PO_7 V_{P-O}					$\langle S_{P-O} \rangle$ $V_{Ca(1)-O}$ $V_{Ca(2)-O}$ $V_{Ca(3)-O}$ $V_{Ca(4)-O}$ $\langle S_{Ca-O} \rangle$
B α	4.7584(4) 1.1896 4.8566(4) 1.2142		$1.8409(8)$ 2.0295(8)	2.0214(7) 1.9199(9) 2.2087(7) 1.9399(8) 0.2650	0.2419

The coordination numbers of P^{5+} and Ca^{2+} are shown in parentheses.

(Table 2). It can be seen that the measured relative dielectric constants at a frequency of 10 GHz are almost in agreement with the calculated ones. The slightly lower dielectric constant of α -Ca₂P₂O₇ than that of β -Ca₂P₂O₇ is mainly due to its higher porosity and lower molecular concentration.

The $Q \times f$ value of β -Ca₂P₂O₇ is 53,500 GHz, which is about three times larger than that of α -Ca₂P₂O₇. It is well known that losses in microwave dielectrics consist of intrinsic and extrinsic losses. The former is related to the crystal structure and bonding character of the materials. The bond valence sum (V_{P-O}, V_{Ca-O}) and average bond strength ($\langle S_{P-O} \rangle$, $\langle S_{Ca-O} \rangle$) of P^{5+} and Ca²⁺ in β - and α -Ca₂PO₇ were calculated according to the method of Brown^{[11](#page-3-0)} (Table 3). Although the observed average bond valence sum for the cations in β - and α -Ca₂PO₇ are all more than 95% of their nominal charges, the individual bond strengths significantly deviate from the ideal value due to the large polyhedral distortion.[8](#page-3-0) The average bond strength can be calculated from the average bond valence sum divided by the average cation coordination numbers (Table 3). The average bond strength of P^{5+} in β -Ca₂P₂O₇ is 1.1896, which is lower than that in α -Ca₂P₂O₇ (1.2142). In contrast the average bond strength of Ca^{2+} in β -Ca₂P₂O₇ is larger than that in α -Ca₂P₂O₇. Force constants and bond energies increase with the average bond strength for the same type of bond although a quantitative correlation is difficult to determine.^{[11](#page-3-0)} According to

Fig. 4. IR reflectivity spectrum of β -Ca₂P₂O₇.

classic dielectric dispersion theory, intrinsic dielectric losses are mainly related to the anharmonicity of optical lattice vibration modes, which usually can be modeled as an additive system of damped harmonic oscillators. A larger force constant implies a lower damping (weaker anharmonic) constant and hence lower dielectric loss. It implies a reverse influence of ${}_{\leq S_{P-O}}$ and $\langle S_{\text{Ca-O}} \rangle$ on the dielectric loss in α - and β -Ca₂P₂O₇. However, it is known that the lowest frequency vibration mode contribution to the microwave dielectric loss is much higher than that of the other modes. The infrared reflectivity spectrum for β -Ca₂P₂O₇ is shown in [Fig. 4](#page-2-0). It can be divided into three wave number regions.12 The modes appearing between 400 and 630 cm^{-1} are thought to be due to the bending vibration of $PO₃$ and rocking vibration of O–PO₃. The two modes between 630 and 980 cm^{-1} can be ascribed to the POP bridge stretching vibrations, and the modes between 980 and 1270 cm-¹ should be the stretching vibration of PO3. There are no other vibration modes over 1270 cm^{-1} . Thus the vibration modes involving Ca^{2+} should be lie in far infrared range, outside of the range of experimental measurement. We infer that the intrinsic microwave dielectric losses are due mainly to the vibration modes involving Ca^{2+} . On the other hand, the bond strength of P^{5+} is much larger than that of Ca^{2+} [\(Table 3](#page-2-0)). Since the strong bonds will tend to be more covalent, and the weak bonds will tend to be more ionic.¹¹ Bond valence, therefore, not only measures the number of electrons associated with a bond, but also, in practice, the degree of covalence. The covalence of the P–O and Ca–O bond was calculated by the method of Brown and Shannon.¹³ The strong P –O bond gives about 60% covalent character, and the weak Ca–O bond gives about 78% ionic character. The polarization mechanism in microwave dielectrics is mainly due to the cation and anion sublattice displacement induced by an electric field; this is possible only in ionic crystal. So, it is this covalent character of the P–O bond that is responsible for the low dielectric constant of $Ca_2P_2O_7$. Hence one may conclude that the intrinsic microwave dielectric losses are mainly from the contribution of the ionic Ca– O bond. Since the average bond strength of Ca^{2+} in β -Ca₂P₂O₇ is larger than that in α -Ca₂P₂O₇, a higher Q value should be expected for β -Ca₂P₂O₇, which is in agreement with the experimental data. Furthermore, the inhomogeneous microstructure and micro-cracks in the grains of α -Ca₂P₂O₇ are the main sources of its extrinsic losses, which is the main reason why the Q value of α -Ca₂P₂O₇ is much lower than that of β -Ca₂P₂O₇. The τ_f of β -Ca₂P₂O₇ and α -Ca₂P₂O₇ is -53 and -97 ppm/ C .

4. Conclusions

 $Ca_2P_2O_7$ has low dielectric constant less than 10 because of the covalent character of the P–O bond. Its intrinsic losses are mainly from the contribution of ionic Ca–O bond. The Q value of α -Ca₂P₂O₇ is much lower than that of β -Ca₂P₂O₇ owning to its weaker Ca–O bond and inhomogeneous microstructure such as microcracks introduced by the phase transformation. The β -Ca₂P₂O₇ sintered at 1150 °C/2 h has excellent microwave dielectric properties: ε_r =8.4, $0 \times f$ =53,500 GHz and τ_f = -53 ppm/°C.

Acknowledgements

This research was supported by a grant from the Centor for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.

References

- 1. Penn, S. J., Alford, N.McN., Templeton, A., Wang, X., Xu, M., Reece, M. and Schrapel, K., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram, Soc., 1997, 80(7), 1885–1888.
- 2. Cho, S. Y., Kim, I. T. and Hong, K. S., Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res., 1999, 14, 114–119.
- 3. Ranby, P. W., Mash, D. H. and Henderson, S. T., The investigation of new phosphor, with particular reference to the pyrophosphates. Brit. J. Appl. Phys., 1955, 4(Suppl), 18–25.
- 4. Lin, F. H., Liaw, J. R., Hon, M. H. and Wang, C. Y., The effects of $Na_4P_2O_7$ 10H₂O addition on the mechanical properties of sintered $Ca₂P₂O₇$ bioceramics. *Mater. Chem. Phys*, 1995, 41, 110–116.
- 5. Webb, N. C., The crystal structure of β -Ca₂P₂O₇. Acta. Cryst, 1966, 21, 942–948.
- 6. Calvo, C., The crystal structure of α -Ca₂P₂O₇. Inorg. Chem., 1968, 7, 1345–1351.
- 7. Parodi, J. A., Hickok, R. L., Segelken, W. G. and Cooper, J. R., Electronic paramagnetic resonance study of the thermal decomposition of dibasic calcium orthophosphate. J. Electrochem. Soc., 1965, 112, 688–692.
- 8. Dowty, E. ATOMS, Structure Viewing Software, Shape Software, 521 Hidden Valley Rd Kingsport, TN, 37663, USA.
- 9. Bain, J. J., Kim, D. W. and Hong, K. S. Phase transformation and sintering behavior of $Ca_2P_2O_7$. Mater. Res. Bull. (submitted for publication).
- 10. Shannon, R. D., Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys., 1993, 73, 348–365.
- 11. Brown, I. D., Chemical and steric constraints in inorganic solids. Acta. Cryst., 1992, B48, 553–572.
- 12. Khay, N., Ennaciri, A. and Harcharras, M., Vibration spectra of double diphosphates $RbLnP_2O_7$ (Ln = Dy, Ho, Y, Er, Tm, Yb). Vibration Spectroscopy, 2001, 27, 119–126.
- 13. Brown, I. D. and Shannon, R. D., Empirical bond–strength– length curves for oxides. Acta. Cryst., 1973, A29, 266–282.